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We revisit the concavity property of the thermodynamic entropy in order to
formulate a general proof of the minimum energy principle as well as of other
equivalent extremum principles that are valid for thermodynamic potentials and
corresponding Massieu functions under different constraints. The current deri-
vation aims at providing a coherent formal framework for such principles which
may be also pedagogically useful as it fully exploits and highlights the equiva-
lence between different schemes. We also elucidate the consequences of the
extremum principles for the general shape of thermodynamic potentials in rela-
tion to first-order phase transitions.
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1. INTRODUCTION

In developing the formal structure of thermodynamics, one usually starts
from the maximum entropy principle as the guiding principle that is used
to predict the equilibrium conditions which apply to isolated systems. This
is, actually, the way the subject was introduced by Callen in his celebrated
book. (1) Crucially important in his presentation of equilibrium thermody-
namics is the proof of the equivalence between different representations
which are based on different choices of the natural variables that can be
introduced in order to describe the macroscopic state of the system. Such
a proof implies an extension of the extremum principle to other thermo-
dynamic schemes. However, the approach that is usually pursued to
justify the above equivalence, albeit physically well founded, may be not



completely satisfactory on the formal side. More specifically, the ordinary
proof of the minimum energy principle is formulated for a system with just
one degree of freedom and its extension to a thermodynamic space of
higher dimensionality is not, in our opinion, straightforward.

This state of affairs is also probably responsible for the somewhat
uncertain status of ‘‘thermodynamic potentials’’ with multiple minima that
are usually introduced when discussing first-order phase transitions. (1)

Actually, it is not immediately clear how such a potential, which fails to
fulfil the convexity requirement, is related to the fundamental equation of
the system, unless one explicitly intends to represent a Landau free energy,
i.e., the outcome of a mean-field calculation.

For the above reasons, we believe that it can be useful to revisit the
proof of the extremum principles used in thermodynamics in order to place
all representations on a more clear mathematical basis which may turn
useful also for a pedagogical presentation of the subject.

The outline of the paper is as follows: in Section 2, we provide a
general proof of the minimum energy principle based on the concavity
property of the entropy function. Then, upon discussing the case of a
system in contact with a reservoir, we derive in Section 3 other forms of the
extremum principle which apply to the generalized thermodynamic poten-
tials and related Massieu functions. We also analyze the pattern of sin-
gularities of, say, the Gibbs free energy in proximity to a first-order transi-
tion point. Some further remarks and a brief summary of the main results
are given in the Conclusions.

2. THE MINIMUM ENERGY PRINCIPLE

Following Callen, (1) the fundamental problem of thermodynamics is to
find the equilibrium state of an overall isolated macroscopic system follow-
ing the removal of one or more internal constraints, i.e., walls restrictive
with respect to the exchange of energy and, possibly, of other extensive
quantities between the various parts of the system. As is well known, the
solution to this problem can be cast in terms of the maximum entropy
principle: the equilibrium state eventually singled out by the system is the
one that maximizes the total entropy out of the variety of states that are
compatible with the residual constraints.

Thermodynamics essentially postulates three properties for the entropy S:(1)

(1) S is a well-behaved, first-order homogeneous function of the extensive
parameters (a property leading to Euler’s theorem (1)); (2) S is additive
over disjoint subsystems; and (3) the partial derivative of S with respect to
the energy U is strictly positive (implying that the temperature T > 0).
In particular, this latter condition allows one to express the energy as
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a function of the entropy as well as of the other extensive parameters Xi

which specify the state of the system, in such a way that the knowledge of
U(S, X1, X2,...) is equivalent to that of S(U, X1, X2,...). In the following,
we shall ignore any exception to the above conditions such as those arising
from the existence of long-ranged interactions between the constituent par-
ticles (additivity and, possibly, extensivity violated), or from an effective
ergodicity breaking (which causes the unattainability of equilibrium).

In order to set the stage for our subsequent reasoning, we consider an
isolated system described by the energy U, the volume V, and the number
of particles N as the only extensive parameters. For this system, the
entropy is written as

S(U, V, N)=SU(U, V, N) U+SV(U, V, N) V+SN(U, V, N) N, (1)

where SX( · · · ) is the partial derivative of S with respect to X and
SU(U, V, N) > 0. This condition allows one to solve Eq. (1) in U,

U(S, V, N)=T(S, V, N) S − P(S, V, N) V+m(S, V, N) N, (2)

whereT(S, V, N) — US(S, V, N) is the temperature,P(S, V, N) — −UV(S, V, N)
is the pressure, and m(S, V, N) — UN(S, V, N) is the chemical potential.

It is useful to recall that, given a function y=Y(x, a) with Yx(x, a)
] 0, the variable x can be expressed, on fairly general grounds, in terms of
y as x=X(y, a), with

Xy(y, a)=
1

Yx(X(y, a), a)
and Xa(y, a)=−

Ya(X(y, a), a)
Yx(X(y, a), a)

. (3)

Then, the partial derivatives of S can be identified as:

SU(U, V, N)=
1

T(S(U, V, N), V, N)
— 1 1

T
2 (U, V, N);

SV(U, V, N)=
P(S(U, V, N), V, N)
T(S(U, V, N), V, N)

— 1P
T
2 (U, V, N);

SN(U, V, N)= −
m(S(U, V, N), V, N)
T(S(U, V, N), V, N)

— −1 m

T
2 (U, V, N).

(4)

It is now possible to show that the maximum principle, along with the
extensivity and additivity properties, underlies the concavity of the entropy
function. Let l be any number with 0 < l < 1. Furthermore, let (U1, V1, N1)
and (U2, V2, N2) identify two generic macroscopic states of the system.
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Imagine, then, to form a single isolated system by putting together a frac-
tion 1 − l of (U1, V1, N1) and a fraction l of (U2, V2, N2). Once the
exchange of U, V, and N between the two subsystems is allowed, the overall
system evolves until its entropy reaches a value S((1 − l) U1+lU2,...)
which is larger than (or at most equal to) the initial value S((1 − l) U1,...)
+S(lU2,...). Thanks to the extensivity of the entropy, this readily implies
that S is a concave function of U, V, and N:

S((1 − l) U1+lU2,...) \ (1 − l) S(U1, V1, N1)+lS(U2, V2, N2). (5)

In deriving Eq. (5), we have tacitly assumed that the state space is a convex
set. This assumption is physically reasonable as, for instance, the set
U > U0, V > 0, and N > 0 is an open convex subset of R3. (2)

As is well known, the occurrence of an equality sign in (5) is linked
with the phenomenon of phase coexistence, i.e., with the occurrence of a
first-order phase transition. In such a case, the system is macroscopically
inhomogeneous and the state ((1 − l) U1+lU2,...) is interpreted as a
mixture of the phases (U1, V1, N1) and (U2, V2, N2). Hence, unless two dis-
tinct thermodynamic phases can coexist, S(U, V, N) is a strictly concave
function of U, V, N (i.e., Eq. (5) holds as a strict inequality).

Owing to the concavity of the entropy, the Hessian form of S is nega-
tive semidefinite (see Theorem 3 in Appendix A of ref. 2), a property that is
usually expressed as d2S [ 0. Upon taking in Eq. (5) N1=N2, the (U, V)
Hessian of S turns out to be negative semidefinite as well. This condition
yields the inequalities: (3)

SUU [ 0, SVV [ 0, and SUUSVV − S2
UV \ 0, (6)

which are to be satisfied for all (U, V, N). These inequalities represent the
conditions of thermodynamic stability for a system at equilibrium. It
follows from Eqs. (6) that the constant-volume and constant-pressure
heat capacities and the isothermal and isentropic compressibilities are
non negative quantities. (1) Similar stability conditions do also hold for
U(S, V, N). In fact, a rather straightforward calculation along the same
lines as those leading to Eqs. (B33)–(B35) of ref. 2, yields:

USS(S, V, N)=TS(S, V, N)=−T(S, V, N)3 SUU(U(S, V, N), V, N) \ 0;

UVV(S, V, N)= − PV(S, V, N)=−T(S, V, N)

× [SVV(U(S, V, N), V, N) − 2SUV(U(S, V, N), V, N)

· P(S, V, N)+SUU(U(S, V, N), V, N) · P(S, V, N)2] \ 0;

USSUVV − U2
SV=T(S, V, N)4 (SUUSVV − S2

UV) \ 0. (7)
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As for the sign of UVV, note that the quantity within square brackets is the
value taken in (1, −P(S, V, N)) by the (U, V) Hessian of S relative to
(U(S, V, N), V, N).

Now, let us consider an isolated system composed of two weakly
interacting subsystems (say, 1 and 2), not necessarily made of the same
substance, which, after removing an internal wall, may exchange energy
and one more extensive quantity (e.g., the volume V) between each other.
Hereafter, we shall omit in the notation explicit reference to any other
extensive parameter that is separately conserved for each subsystem. The
equilibrium state eventually reached by the system is the state that
maximizes the total entropy

S̃(U1, V1; U, V)=S(1)(U1, V1)+S(2)(U − U1, V − V1) (8)

with respect to the parameters of subsystem 1. In Eq. (8), U and V are the
(fixed) values of energy and volume pertaining to the entire system. It is
worth noting that the concavity of S (1) and S (2) implies that S̃ as well is a
concave function of U1 and V1:

S̃((1 − l) U (A)
1 +lU (B)

1 , (1 − l) V (A)
1 +lV (B)

1 ; U, V)

=S(1)((1 − l) U (A)
1 +lU (B)

1 ,...)+S(2)(U − (1 − l) U (A)
1 − lU (B)

1 ,...)

=S(1)((1 − l) U (A)
1 +lU (B)

1 ,...)+S(2)((1 − l)(U − U (A)
1 )+l(U − U (B)

1 ),...)

\ (1 − l) S̃(U (A)
1 , V (A)

1 ; U, V)+lS̃(U (B)
1 , V (B)

1 ; U, V). (9)

As a result, the (U1, V1) Hessian of S̃ is negative semidefinite, which
implies:

S̃U1U1
[ 0, S̃V1V1

[ 0, and S̃U1U1
S̃V1V1

− S̃2
U1V1

\ 0. (10)

We now turn to the maximum condition for S̃. The necessary condi-
tions for any extremal point (U0

1, V0
1) of S̃ are:

S̃U1
=0 2

1 1
T
2 (1)

(U0
1, V0

1)=1 1
T
2 (2)

(U − U0
1, V − V0

1); (11)

S̃V1
=0 2

1P
T
2 (1)

(U0
1, V0

1)=1P
T
2 (2)

(U − U0
1, V − V0

1). (12)

These equations merely express the well known fact that the conditions of
thermal and mechanical equilibrium between subsystems 1 and 2 entail the
same values of temperature and pressure for both subsystems. Further-
more, because of the concavity property, any extremum of S̃ is necessarily
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a global maximum, which is moreover strict if S̃ is strictly concave (see
Theorem 1 and the corollary of Theorem 2 in Appendix A of ref. 2).

The solution to Eqs. (11) and (12) is generally unique (say, U0
1(U, V)

and V0
1(U, V)). In fact, even if the final equilibrium state hosted two

coexisting phases, the values of energy and volume of each subsystem
would be uniquely determined from (11) and (12), owing to the fact that N1

and N2 are fixed. Note that the derivatives of

S(U, V) — S̃(U0
1(U, V), V0

1(U, V); U, V) (13)

are well-defined only when the point of maximum of S̃ is unique. In this
case:

SU=S̃U1
· (U0

1)U+S̃V1
· (V0

1)U+S̃U=S̃U

=1 1
T
2 (2)

(U − U0
1(U, V), V − V0

1(U, V)) — 1 1
T
2 (U, V) > 0;

SV=S̃U1
· (U0

1)V+S̃V1
· (V0

1)V+S̃V=S̃V

=1P
T
2 (2)

(U − U0
1(U, V), V − V0

1(U, V)) — 1P
T
2 (U, V). (14)

We further notice that, if S (1) and S (2) happen to be the same function S
(i.e., they pertain to the same substance), then S(U, V)=S(U, V, N1+N2)
is a concave function of U and V.

We now proceed to demonstrate that the maximum entropy principle
can be reformulated as a minimum principle for the total energy, under
a constraint on the value of the total entropy. To begin with, we call
U (1)(S1, V1) the energy function of subsystem 1, obtained from S1=
S (1)(U1, V1) by solving the latter with respect to U1. Similarly, let U (2)(S2, V2)
be the energy of subsystem 2. The crucial step in our proof of the minimum
energy principle will be to show that U (1) and U (2) are convex functions. To
this aim, all we need to recall is that U (1)(S, V) (as well as U (2)) is an
increasing function of its former argument, since U (1)

S (S, V)=T(1)(S, V)
> 0. Setting SA=S (1)(UA, VA) and SB=S(1)(UB, VB), the concavity of S (1),

S (1)((1 − l) UA+lUB, (1 − l) VA+lVB)

\ (1 − l) S (1)(UA, VA)+lS (1)(UB, VB), (15)
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can be rewritten as

(1 − l) SA+lSB [ S (1)((1 − l) U (1)(SA, VA)+lU (1)(SB, VB), (1 − l) VA+lVB).
(16)

After evaluating U (1) at the point ((1 − l) SA+lSB, (1 − l) VA+lVB), it
immediately follows from Eq. (16) that:

U (1)((1 − l) SA+lSB, (1 − l) VA+lVB)

[ (1 − l) U (1)(SA, VA)+lU (1)(SB, VB). (17)

Under such premises, we shall now prove that, if the total entropy takes the
value S — S(U, V), then the function

Ũ(S1, V1; S, V)=U(1)(S1, V1)+U(2)(S − S1, V − V1), (18)

attains its minimum for V1=V0
1(U, V) and S1=S (1)(U0

1(U, V), V0
1(U, V)) —

S0
1(U, V), where (U0

1(U, V), V0
1(U, V)) is any solution to Eqs. (11) and

(12). Moreover, the minimum value of Ũ is U.
We start noting, using an argument identical to that already developed

for S̃, that Ũ is a convex function of S1 and V1. Therefore, in order to
achieve our goal, all we need to show is that the first-order derivatives of Ũ
at (S0

1(U, V), V0
1(U, V)) are both zero, since then the convexity of Ũ allows

one to conclude that the extremum is a global minimum.
The general expression of the first-order derivatives of Ũ is:

ŨS1
=T (1)(S1, V1) − T (2)(S − S1, V − V1)

=S (1)
U1

(U (1)(S1, V1), V1)−1 − S (2)
U2

(U(2)(S − S1, V − V1), V − V1)−1

3 1 1
T
2 (2)

(U (2)(S − S1, V − V1), V − V1) −1 1
T
2 (1)

(U(1)(S1, V1), V1);
(19)

ŨV1
= − P (1)(S1, V1)+P(2)(S − S1, V − V1)

=1P
T
2 (2)

(U (2)(S − S1, V − V1), V − V1) · T (2)(S − S1, V − V1)

−1P
T
2 (1)

(U (1)(S1, V1), V1) · T (1)(S1, V1). (20)
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When S1=S0
1(U, V) and V1=V0

1(U, V), the energy of subsystem 1 is

U (1)(S0
1(U, V), V0

1(U, V))=U0
1(U, V), (21)

since U (1) is the inverse of S (1). Moreover,

S (2)(U − U0
1(U, V), V − V0

1(U, V))=S(U, V) − S (1)(U0
1(U, V), V0

1(U, V))

=S − S0
1(U, V), (22)

which implies:

U (2)(S − S0
1(U, V), V − V0

1(U, V))=U − U0
1(U, V). (23)

Given Eqs. (21) and (23), it follows from Eq. (11) that ŨS1
=0. This result,

when combined with Eq. (12), yields ŨV1
=0. Finally, the absolute mini-

mum of Ũ is clearly U (see Eqs. (21) and (23)) and this completes our
proof. We further note that U(S, V)=minS1, V1

Ũ(S1, V1; S, V) is the inverse
function of S(U, V). In fact, for arbitrary U and V, we have shown that
U(S(U, V), V)=U. We point out that the hypothesis according to which
the subsystems can only exchange two extensive parameters between each
other does not affect the generality of our proof of the minimum energy
principle; rather, this restriction simply avoids the use of a cumbersome
notation.

A different derivation of the minimum energy principle, which does
not resort to the convexity of Ũ, is also viable. In this case, one must show
that the (S1, V1) Hessian of Ũ for V1=V0

1(U, V) and S1=S0
1(U, V) is posi-

tive definite. Actually, what can be achieved this way is a weaker result,
i.e., that the Hessian of Ũ at the extremal point is positive semidefinite.

Using Eqs. (7), one immediately gets for V1=V0
1(U, V) and S1=

S0
1(U, V):

ŨS1S1
= − T0(U, V)3 S̃U1U1

\ 0;

ŨV1V1
= − T0(U, V)(S̃V1V1

− 2S̃U1V1
P0(U, V)+S̃U1U1

P0(U, V)2) \ 0;

ŨS1V1
= − T0(U, V)2 ( − S̃U1U1

P0(U, V)+S̃U1V1
),

(24)

where T0(U, V)=T(1)(S0
1(U, V), V0

1(U, V)), P0(U, V)=P(1)(S0
1(U, V),

V0
1(U, V)), whereas the arguments of the second-order S̃ derivatives are

U0
1(U, V), V0

1(U, V), U, and V. Equations (24) also lead to:

ŨS1S1
ŨV1V1

− Ũ2
S1V1

=T0(U, V)4 (S̃U1U1
S̃V1V1

− S̃2
U1V1

) \ 0, (25)
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which concludes the proof that the Hessian of Ũ is positive semidefinite in
the final equilibrium state. Besides the general impossibility to conclude, on
account of the above inequalities, that the Ũ extremum is a minimum (in
fact, we are abstaining from using the convexity of Ũ), the intrinsic limita-
tion of the latter proof of the minimum energy principle lies in the fact that
it only applies when the subsystems are allowed to mutually exchange at
most two extensive parameters. In fact, only in this case the character of
the Hessian of Ũ in the final equilibrium state can be decided in a relatively
simple way on the basis of the sign of the second-order derivatives.

3. MINIMUM PRINCIPLES FOR OTHER THERMODYNAMIC

POTENTIALS

Thermodynamic representations other than the entropy or the energy
schemes arise when describing the equilibrium of a system that is in contact
with a reservoir. Let us consider, for instance, an energy reservoir (heat
bath). By definition, the temperature of a heat bath is the same in any
state, i.e.,

(Sr)Ur
(Ur, Vr)=

1
T

, (26)

a constant number which does not depend on the energy Ur or the volume
Vr of the reservoir. Hence, the entropy of a heat bath reads as

Sr(Ur, Vr)=
Ur

T
+f(Vr), (27)

where f is an unspecified, concave function of Vr. As usual, we omitted to
specify the particle number in the notation.

When a system with an entropy function S(U, V) is brought into
contact with a heat bath, the joint system being isolated from the outside
environment, the final equilibrium state maximizes the total entropy

S̃(U; Utot, V, Vr)=S(U, V)+Sr(Utot − U, Vr), (28)

for fixed Utot=U+Ur, V, and Vr (we assume that a rigid and impermeable
wall keeps the system separate from the bath). The maximum condition
then reads:

S̃U=0 2 SU(U, V)=
1
T

, (29)
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which is equivalent to US(S, V)=T, U(S, V) being the inverse function of
S(U, V). It might happen that the solution U0 to Eq. (29) is not unique.
However, if S(U, V) is strictly concave, there is a unique point of
maximum U0(T, V) for S̃, which represents the equilibrium value of the
system energy. In this case, the system entropy in the joint equilibrium state
is also well-defined, being S(U0(T, V), V) — S0(T, V) and U(S0(T, V), V)=
U0(T, V).

Let us now introduce the convex function of U and V given by

F̃(U; T, V)=U − TS(U, V). (30)

By simply looking at its derivatives,

F̃U=1 − TSU and F̃UU=−TSUU, (31)

it is immediately apparent that the maximum condition for S̃ is also the
minimum condition for F̃. We call F̃ a generalized thermodynamic poten-
tial. (4) The minimum value F(T, V) of F̃ is the usual Helmholtz free energy.
In fact, F(T, V) is the Legendre transform of U(S, V) with respect to S:

F(T, V)=U0(T, V) − TS(U0(T, V), V)=U(S0(T, V), V) − TS0(T, V)

=[U(S, V) − TS]S=S0(T, V), (32)

where we observe that S0(T, V) is the unique solution to US(S, V)=T
(a more general case is treated below). It is rather simple to calculate the
first-order F derivatives:

FT=U0
T(T, V) − S(U0(T, V), V) − TSU(U0(T, V), V) · U0

T(T, V)

= − S(U0(T, V), V)=−S0(T, V); (33)

FV=U0
V(T, V) − T[SU(U0(T, V), V) · U0

V(T, V)+SV(U0(T, V), V)]

= − TSV(U0(T, V), V)=−
SV(U0(T, V), V)
SU(U0(T, V), V)

=UV(S0(T, V), V)

= − P(S0(T, V), V) — − P0(T, V). (34)

In order to calculate the second-order derivatives of F we make use of
Eqs. (B5) and (B7) of ref. 2:

FTT= − S0
T(T, V)=−

1
USS(S0(T, V), V)

< 0;

FVV= − P0
V(T, V)=

USSUVV − U2
SV

USS(S0(T, V), V)
\ 0.

(35)
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It thus follows that F is a concave function of T and a convex function
of V.

Let us now consider the case of multiple solutions to Eq. (29). For
instance, it may happen for a particular value Tc of T that Eq. (29) is solved
by all U ¥ [U0

A, U0
B], with U0

A=U(S0
A, V) and U0

B=U(S0
B, V). This occurs

if, between U0
A and U0

B, S(U, V) is a linear function of U (first-order tran-
sition at temperature Tc). In this case, US(S, V)=Tc is satisfied for all
S ¥ [S0

A, S0
B], and US cannot be inverted as a function of S. However, the

function F̃ is still well-defined, along with its global minimum F(Tc, V).
Furthermore, Eq. (32) still holds, provided we call S0(T, V) the unique
solution to U(S, V)=U0(T, V). In particular,

lim
T Q T −

C

F(T, V)=U0
A − TcS

0
A=U0

B − TcS
0
B= lim

T Q T+
C

F(T, V), (36)

which means that F(T, V) is continuous for T=Tc. However, F(T, V) has
a cusp-like singularity for T=Tc:

lim
T Q T −

C

FT(T, V)=−S0
A ] − S0

B= lim
T Q T+

C

FT(T, V). (37)

As a further example, let us consider the case of a system exchanging
energy and volume with a reservoir. The values of temperature and
pressure are both fixed for the reservoir:

(Sr)Ur
(Ur, Vr)=

1
T

and (Sr)Vr
(Ur, Vr)=

P
T

. (38)

Therefore, the bath entropy is now fully specified as

Sr(Ur, Vr)=
Ur+PVr

T
. (39)

The maximum conditions for the total entropy

S̃(U, V; Utot, Vtot)=S(U, V)+Sr(Utot − U, Vtot − V) (40)

then read:

S̃U=0 2 SU(U, V)=
1
T

; (41)

S̃V=0 2 SV(U, V)=
P
T

. (42)

Assuming a unique solution for the above equations, one finds U=
U0(T, P) and V=V0(T, P). Upon assuming S0(T, P) to be S(U0(T, P),
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V0(T, P)), one has U(S0(T, P), V0(T, P))=U0(T, P). Moreover, Eqs. (41)
and (42) are equivalent to US(S, V)=T and UV(S, V)=−P.

As we did previously for a system in contact with a heat bath, it is
appropriate to introduce the auxiliary, convex function of U and V, given by

G̃(U, V; T, P)=U − TS(U, V)+PV. (43)

Clearly, G̃ attains its minimum for U=U0(T, P) and V=V0(T, P), since

G̃U=1 − TSU and G̃V=−TSV+P (44)

are both zero. The minimum value G(T, P) of G̃ is the Gibbs free energy.
In fact,

G(T, P)=U0(T, P) − TS(U0(T, P), V0(T, P))+PV0(T, P)

=U(S0(T, P), V0(T, P)) − TS0(T, P)+PV0(T, P)

=[U(S, V) − TS+PV]S=S0(T, P), V=V0(T, P) (45)

is the Legendre transform of U(S, V) with respect to S and V, which have
been replaced by their conjugate variables T and − P (observe that (S0(T, P),
V0(T, P)) is, by our previous assumption, the unique solution to US(S, V)
=T and UV(S, V)=−P). The first-order derivatives of G are simply
calculated as:

GT=U0
T(T, P) − S0(T, P) − T[SU(U0(T, P), V0(T, P)) · U0

T(T, P)

+SV(U0(T, P), V0(T, P)) · V0
T(T, P)]+PV0

T(T, P)

= − S0(T, P); (46)

GP=U0
P(T, P) − T[SU(U0(T, P), V0(T, P)) · U0

P(T, P)

+SV(U0(T, P), V0(T, P)) · V0
P(T, P)]+V0(T, P)+PV0

P(T, P)

=V0(T, P), (47)

whereas, with the help of Eqs. (B20)–(B22) and (B24) of ref. 2, the second-
order G derivatives turn out to be:

GTT= − S0
T(T, P)=−

UVV(S0(T, P), V0(T, P))
USSUVV − U2

SV

[ 0;

GPP=V0
P(T, P)=−

USS(S0(T, P), V0(T, P))
USSUVV − U2

SV

[ 0;

GTTGPP − G2
TP=(USSUVV − U2

SV)−1 > 0.

(48)

Hence, G is a concave function of both T and P.

490 Prestipino and Giaquinta



Summing up, when a system is in thermal and mechanical contact with
a reservoir, it is G̃ (the generalized Gibbs potential) that is minimum at
equilibrium, not the Gibbs free energy as is sometimes stated. Similarly, if
the wall between the system and the reservoir is permeable to the flow of
energy and particles while being restrictive to volume, it is Ã(U, N; T, V, m)
=U − TS(U, V, N) − mN that is minimized at equilibrium, its minimum
value being the system grand potential.

Needless to say, equivalent maximum principles hold for the functions
S(U, V) − (1/T) U and S(U, V) − (1/T) U − (P/T) V, equal to − (1/T)
F̃(U; T, V) and − (1/T) G̃(U, V; T, P), respectively. Their maximum loci
correspond to the usual Massieu functions.

It is worth observing that the minimization of the generalized Gibbs
potential is correct also in the common situation of determining the equi-
librium between two systems that are in contact with the same energy and
volume reservoir. In fact, the maximum condition for the total entropy

S̃=S (1)(U1, V1)+S(2)(U2, V2)+
Utot − U1 − U2+P(Vtot − V1 − V2)

T
(49)

can be rather obviously translated into the minimum condition for the
convex function

G̃(U1, V1, U2, V2; T, P)=G̃ (1)(U1, V1; T, P)+G̃ (2)(U2, V2; T, P)

=U1 − TS(1)(U1, V1)+PV1+U2 − TS(2)(U2, V2)+PV2,
(50)

as immediately follows from computing the partial derivatives of Eq. (50).
In closing, we re-examine the question of the shape of the thermody-

namic potentials for a system undergoing a discontinuous phase transition.
The Gibbs free energy is the thermodynamic potential that is usually con-
sidered for describing the phases of matter. This quantity stems from G̃
after tracing the locus of its global minimum as a function of T and P.
When a discontinuous phase transition line is approached, a piece of ruled
surface appears in the profile of the fundamental relation, and then also in
the graph of G̃, which remains convex, even though not everywhere strictly
convex. This implies a discontinuous evolution for the location of the
absolute G̃ minimum (not for the absolute minimum itself !), i.e., a jump
from one valley to another as soon as the coexistence line is crossed.

While one single minimum is the rule for G̃ in the thermodynamic
limit, this is not generally true for a finite system. In the framework of the
statistical-mechanical foundations of thermodynamics, this means that the
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microcanonical S(U, V, N) of the finite system may not be everywhere
concave. (5) In fact, near the would-be first-order transition point, a dip will
usually appear in the S profile which is responsible for the phenomenon of
metastability. In turn, G̃ is not everywhere convex and a competition arises
between two different local minima: while the deepest minimum charac-
terizes the most stable phase, the other one, as long as it is present, will be
the sign that another phase is at least metastable (this is the usual
occurrence in mean-field treatments of first-order transitions).

The infinite-size behavior of G̃ is sketched in Fig. 1, where its typical
profile close to a first-order transition point is shown. Here, G̃(U, V; T, P)
is plotted as a function of V/N at constant T, for a number of values of P
across the coexistence line relative to, say, the liquid and the vapor of a
substance (only a slice of the Gibbs surface along a locus U(V) passing
through the actual point of minimum of G̃ is represented in the figure). The
abscissa of the G̃ minimum gives the specific volume of the most stable
system phase for the given T and P values. At the same time, the G profile
will show, both as a function of P at constant T as well as a function of T
at constant P, a cusp-like singularity of the same kind discussed before for
the Helmholtz free energy, which is responsible for the discontinuities of
volume and entropy, respectively, across the transition.

Fig. 1. The figure shows how the profile of G̃ plotted as a function of the volume V is
modified when approaching a first-order phase transition, like that from vapor to liquid. As
the pressure changes—at constant temperature—across the coexistence value Pcoex, one obser-
ves a thermodynamic-stability crossover from the vapor to the liquid phase (see text). Note
that, with the single exception of P=Pcoex, the point of minimum of G̃ is regular (in particular,
the tangent plane is well-defined there).
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4. CONCLUSIONS

Starting from the maximum entropy principle, we have provided a
detailed derivation of the principle of minimum energy and of similar
principles for thermodynamic potentials and Massieu functions, by resort-
ing to the mathematical theory of concave many-variable functions. This
calculation was also motivated by the fact that standard reference books on
thermodynamics usually do not give enough information about this point.
In our opinion, proving the interchangeability of all thermodynamic repre-
sentations is a necessary prerequisite that allows the interested reader to
fully appreciate the elegance of the thermodynamic formalism.
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